Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 118
1.
BMC Med Educ ; 24(1): 531, 2024 May 14.
Article En | MEDLINE | ID: mdl-38741079

BACKGROUND: An urgent need exists for innovative surgical video recording techniques in head and neck reconstructive surgeries, particularly in low- and middle-income countries where a surge in surgical procedures necessitates more skilled surgeons. This demand, significantly intensified by the COVID-19 pandemic, highlights the critical role of surgical videos in medical education. We aimed to identify a straightforward, high-quality approach to recording surgical videos at a low economic cost in the operating room, thereby contributing to enhanced patient care. METHODS: The recording was comprised of six head and neck flap harvesting surgeries using GoPro or two types of digital cameras. Data were extracted from the recorded videos and their subsequent editing process. Some of the participants were subsequently interviewed. RESULTS: Both cameras, set at 4 K resolution and 30 frames per second (fps), produced satisfactory results. The GoPro, worn on the surgeon's head, moves in sync with the surgeon, offering a unique first-person perspective of the operation without needing an additional assistant. Though cost-effective and efficient, it lacks a zoom feature essential for close-up views. In contrast, while requiring occasional repositioning, the digital camera captures finer anatomical details due to its superior image quality and zoom capabilities. CONCLUSION: Merging these two systems could significantly advance the field of surgical video recording. This innovation holds promise for enhancing technical communication and bolstering video-based medical education, potentially addressing the global shortage of specialized surgeons.


COVID-19 , Video Recording , Humans , COVID-19/epidemiology , Plastic Surgery Procedures/education , Surgical Flaps , SARS-CoV-2 , Head/surgery , Neck/surgery
2.
Fish Shellfish Immunol ; 149: 109574, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38692379

B-cell lymphoma/leukemia-2 (BCL2), an anti-apoptotic factor in the mitochondrial regulatory pathway of apoptosis, is critically important in immune defenses. In this study, a novel BCL2 gene was characterized from Pteria penguin (P. penguin). The PpBCL2 was 1482 bp long, containing an open reading frame (ORF) of 588 bp encoding 195 amino acids. Four highly conserved BCL-2 homology (BH) domains were found in PpBCL2. Amino acid alignment and phylogenetic tree showed that PpBCL2 had the highest similarity with BCL2 of Crassostrea gigas at 65.24 %. Tissue expression analysis showed that PpBCL2 had high constitutive expression in gill, digestive diverticulum and mantle, and was significantly increased 72 h of Vibrio parahaemolyticus (V. parahaemolyticus) challenge in these immune tissues. Furthermore, PpBCL2 silencing significantly inhibited antimicrobial activity of hemolymph supernatant by 1.4-fold, and significantly reduced the survival rate by 51.7 % at 72 h post infection in P. penguin. These data indicated that PpBCL2 played an important role in immune response of P. penguin against V. parahaemolyticus infection.

3.
Cardiovasc Diabetol ; 23(1): 140, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664681

BACKGROUND: Diabetic vascular remodeling is the most important pathological basis of diabetic cardiovascular complications. The accumulation of advanced glycation end products (AGEs) caused by elevated blood glucose promotes the proliferation and migration of vascular smooth muscle cells (VSMCs), leading to arterial wall thickening and ultimately vascular remodeling. Therefore, the excessive proliferation and migration of VSMCs is considered as an important therapeutic target for vascular remodeling in diabetes mellitus. However, due to the lack of breakthrough in experiments, there is currently no effective treatment for the excessive proliferation and migration of VSMCs in diabetic patients. Bcl-2-associated athanogene 3 (BAG3) protein is a multifunctional protein highly expressed in skeletal muscle and myocardium. Previous research has confirmed that BAG3 can not only regulate cell survival and apoptosis, but also affect cell proliferation and migration. Since the excessive proliferation and migration of VSMCs is an important pathogenesis of vascular remodeling in diabetes, the role of BAG3 in the excessive proliferation and migration of VSMCs and its molecular mechanism deserve further investigation. METHODS: In this study, BAG3 gene was manipulated in smooth muscle to acquire SM22αCre; BAG3FL/FL mice and streptozotocin (STZ) was used to simulate diabetes. Expression of proteins and aortic thickness of mice were detected by immunofluorescence, ultrasound and hematoxylin-eosin (HE) staining. Using human aorta smooth muscle cell line (HASMC), cell viability was measured by CCK-8 and proliferation was measured by colony formation experiment. Migration was detected by transwell, scratch experiments and Phalloidin staining. Western Blot was used to detect protein expression and Co-Immunoprecipitation (Co-IP) was used to detect protein interaction. RESULTS: In diabetic vascular remodeling, AGEs could promote the interaction between BAG3 and signal transducer and activator of transcription 3 (STAT3), leading to the enhanced interaction between STAT3 and Janus kinase 2 (JAK2) and reduced interaction between STAT3 and extracellular signal-regulated kinase 1/2 (ERK1/2), resulting in accumulated p-STAT3(705) and reduced p-STAT3(727). Subsequently, the expression of matrix metallopeptidase 2 (MMP2) is upregulated, thus promoting the migration of VSMCs. CONCLUSIONS: BAG3 upregulates the expression of MMP2 by increasing p-STAT3(705) and decreasing p-STAT3(727) levels, thereby promoting vascular remodeling in diabetes. This provides a new orientation for the prevention and treatment of diabetic vascular remodeling.


Adaptor Proteins, Signal Transducing , Apoptosis Regulatory Proteins , Cell Movement , Cell Proliferation , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , STAT3 Transcription Factor , Signal Transduction , Vascular Remodeling , STAT3 Transcription Factor/metabolism , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Animals , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Phosphorylation , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Diabetic Angiopathies/metabolism , Diabetic Angiopathies/pathology , Diabetic Angiopathies/physiopathology , Diabetic Angiopathies/etiology , Diabetic Angiopathies/genetics , Male , Cells, Cultured , Mice, Knockout , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Humans , Mice, Inbred C57BL , Glycation End Products, Advanced/metabolism
4.
Cancers (Basel) ; 16(7)2024 Mar 22.
Article En | MEDLINE | ID: mdl-38610923

To develop ultrasound-guided radiotherapy, we proposed an assistant structure with embedded markers along with a novel alternative method, the Aligned Peak Response (APR) method, to alter the conventional delay-and-sum (DAS) beamformer for reconstructing ultrasound images obtained from a flexible array. We simulated imaging targets in Field-II using point target phantoms with point targets at different locations. In the experimental phantom ultrasound images, image RF data were acquired with a flexible transducer with in-house assistant structures embedded with needle targets for testing the accuracy of the APR method. The lateral full width at half maximum (FWHM) values of the objective point target (OPT) in ground truth ultrasound images, APR-delayed ultrasound images with a flat shape, and images acquired with curved transducer radii of 500 mm and 700 mm were 3.96 mm, 4.95 mm, 4.96 mm, and 4.95 mm. The corresponding axial FWHM values were 1.52 mm, 4.08 mm, 5.84 mm, and 5.92 mm, respectively. These results demonstrate that the proposed assistant structure and the APR method have the potential to construct accurate delay curves without external shape sensing, thereby enabling a flexible ultrasound array for tracking pancreatic tumor targets in real time for radiotherapy.

5.
Nat Commun ; 15(1): 3486, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664428

Van der Waals (vdW) assembly of low-dimensional materials has proven the capability of creating structures with on-demand properties. It is predicted that the vdW encapsulation can induce a local high-pressure of a few GPa, which will strongly modify the structure and property of trapped materials. Here, we report on the structural collapse of carbon nanotubes (CNTs) induced by the vdW encapsulation. By simply covering CNTs with a hexagonal boron nitride flake, most of the CNTs (≈77%) convert from a tubular structure to a collapsed flat structure. Regardless of their original diameters, all the collapsed CNTs exhibit a uniform height of ≈0.7 nm, which is roughly the thickness of bilayer graphene. Such structural collapse is further confirmed by Raman spectroscopy, which shows a prominent broadening and blue shift in the Raman G-peak. The vdW encapsulation-induced collapse of CNTs is fully captured by molecular dynamics simulations of the local vdW pressure. Further near-field optical characterization reveals a metal-semiconductor transition in accompany with the CNT structural collapse. Our study provides not only a convenient approach to generate local high-pressure for fundamental research, but also a collapsed-CNT semiconductor for nanoelectronic applications.

6.
Medicine (Baltimore) ; 103(12): e37414, 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38518043

BACKGROUND: Stem cell therapy on ischemic stroke has long been studied using animal experiments. The efficacy and safety of this treatment in ischemic stroke patients remain uncertain. METHODS: We searched for all clinical randomized controlled trials published before October 2023, on PubMed, EMBASE, and the Cochrane Library using predetermined search terms, and performed a meta-analysis of the efficacy of stem cell therapy in ischemic stroke patients. RESULTS: 13 studies that included 592 ischemic stroke patients were reviewed. The mRS (MD -0.32, 95% CI -0.64 to 0.00, I2 = 63%, P = .05), NIHSS (MD -1.63, 95% CI -2.69 to -0.57, I2 = 58%, P = .003), and BI (MD 14.22, 95% CI 3.95-24.48, I2 = 43%, P = .007) showed effective stem cell therapy. The mortality (OR 0.42, 95% CI 0.23-0.79, I2 = 0%, P = .007) showed improved prognosis and reduce mortality with stem cell therapy. CONCLUSION: Stem cell therapy reduces mortality and improves the neurological prognosis of ischemic stroke patients. However, due to the different types of stem cells used and the limited data in the reported studies, the safety of clinical applications of stem cells in patients with ischemic stroke must be carefully evaluated. Future randomized controlled trials with large sample sizes from controlled cell sources are warranted to validate this finding.


Ischemic Stroke , Stroke , Animals , Humans , Stroke/drug therapy , Ischemic Stroke/therapy , Stem Cell Transplantation
7.
Biomater Sci ; 12(9): 2418-2433, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38511973

Bone defects are a common complication of bone diseases, which often affect the quality of life and mental health of patients. The use of biomimetic bone scaffolds loaded with bioactive substances has become a focal point in the research on bone defect repair. In this study, composite scaffolds resembling bone tissue were created using nacre powder (NP) and sodium alginate (SA) through 3D printing. These scaffolds exhibit several physiological structural and mechanical characteristics of bone tissue, such as suitable porosity, an appropriate pore size, applicable degradation performance and satisfying the mechanical requirements of cancellous bone, etc. Then, platelet-rich fibrin (PRF), containing a mass of growth factors, was loaded on the NP/SA scaffolds. This was aimed to fully maximize the synergistic effect with NP, thereby accelerating bone tissue regeneration. Overall, this study marks the first instance of preparing a bionic bone structure scaffold containing NP by 3D printing technology, which is combined with PRF to further accelerate bone regeneration. These findings offer a new treatment strategy for bone tissue regeneration in clinical applications.


Alginates , Bone Regeneration , Nacre , Platelet-Rich Fibrin , Powders , Printing, Three-Dimensional , Tissue Scaffolds , Alginates/chemistry , Alginates/pharmacology , Bone Regeneration/drug effects , Tissue Scaffolds/chemistry , Nacre/chemistry , Animals , Platelet-Rich Fibrin/chemistry , Tissue Engineering , Humans , Porosity , Bone and Bones/drug effects , Osteogenesis/drug effects
8.
Article En | MEDLINE | ID: mdl-38537777

BACKGROUND: Family environment has long been known for shaping brain function and psychiatric phenotypes, especially in childhood and adolescence. Accumulating neuroimaging evidence suggests that across different psychiatric disorders, common phenotypes might share common neural bases, indicating latent brain-behavior relationships beyond diagnostic categories. However, the influence of family environment on the brain-behavior relationship from a transdiagnostic perspective remains unknown. METHOD: We included a community-based sample of 699 subjects (5-22 yrs.) and applied partial least squares regression analysis to determine latent brain-behavior relationships from the whole brain functional connectivity and comprehensive phenotypic measures. Comparisons were conducted between diagnostic and non-diagnostic groups to help interpret the latent brain-behavior relationships. A moderation model was introduced to examine the potential moderating role of family factors in the estimated brain-behavior association. RESULTS: Four significant latent brain-behavior pairs reflecting relationship of dissociable brain network and general behavioral problems, cognitive and language skills, externalizing problems, and social dysfunction, respectively, were identified. The group comparisons exhibited interpretable variations across different diagnostic groups. Warmth family environment was found to moderate the brain-behavior relationship of core symptoms in internalizing disorders. However, in neurodevelopmental disorders, family factors were not found to moderate the brain-behavior relationship of core symptoms, but were found to affect brain-behavior relationship in other domains. CONCLUSION: Our findings leveraged the transdiagnostic analysis investigating the moderating effects of the family factors on brain-behavior association, emphasizing the different role family factors take in developmental period across distinct diagnostic groups.

9.
PeerJ ; 12: e16935, 2024.
Article En | MEDLINE | ID: mdl-38435998

Background: Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with high heterogeneity, poor prognosis, and a low 10-year survival rate of less than 50%. Although cellular senescence displays extensive effects on cancer, the comprehensions of cellular senescence-related characteristics in TNBC patients remains obscure. Method: Single-cell RNA sequencing (scRNA-seq) data were analyzed by Seurat package. Scores for cellular senescence-related pathways were computed by single-sample gene set enrichment analysis (ssGSEA). Subsequently, unsupervised consensus clustering was performed for molecular cluster identification. Immune scores of patients in The Cancer Genome Atlas (TCGA) dataset and associated immune cell scores were calculated using Estimation of STromal and Immune cells in MAlignantTumours using Expression data (ESTIMATE) and Microenvironment Cell Populations-counter (MCP-counter), Tumor Immune Estimation Resource (TIMER) and Estimating the Proportion of Immune and Cancer cells (EPIC) methods, respectively. Immunotherapy scores were assessed using TIDE. Furthermore, feature genes were identified by univariate Cox and Least Absolute Shrinkage and Selection Operator (LASSO) regression analyses; these were used to construct a risk model. Additionally, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and transwell assay were conducted for in vitro validation of hub genes. Result: TNBC was classified into three subtypes based on cellular senescence-related pathways as clusters 1, 2, and 3. Specifically, cluster 1 showed the best prognosis, followed by cluster 2 and cluster 3. The levels of gene expression in cluster 2 were the lowest, whereas these were the highest in cluster 3. Moreover, clusters 1 and 3 showed a high degree of immune infiltration. TIDE scores were higher for cluster 3, suggesting that immune escape was more likely in patients with the cluster 3 subtype who were less likely to benefit from immunotherapy. Next, the TNBC risk model was constructed and validated. RT-qPCR revealed that prognostic risk genes (MMP28, ACP5 and KRT6A) were up-regulated while protective genes (CT83) were down-regulated in TNBC cell lines, validating the results of the bioinformatics analysis. Meanwhile, cellular experiments revealed that ACP5 could promote the migration and invasion abilities in two TNBC cell lines. Finally, we evaluated the validity of prognostic models for assessing TME characteristics and TNBC chemotherapy response. Conclusion: In conclusion, these findings help to assess the efficacy of targeted therapies in patients with different molecular subtypes, have practical applications for subtype-specific treatment of TNBC patients, and provide information on prognostic factors, as well as guidance for the revelation of the molecular mechanisms by which senescence-associated genes influence TNBC progression.


Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/genetics , Cellular Senescence/genetics , Breast , Aggression , Biological Assay , Tumor Microenvironment/genetics
10.
J Affect Disord ; 354: 483-490, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38484892

OBJECTIVE: To investigate whether the number of years of schooling are causally associated traumatic brain injury (TBI). We aimed to investigate whether the number of years of schooling are causally associated TBI. METHODS: We investigate the prospective causal effect of years of schooling on TBI using summary statistical data. The statistical dataset comprising years of schooling (n = 293,723) from genome-wide association studies (GWASs) deposited in the UK Biobank was used for exposure. We used the following GWAS available in the FinnGen dataset: individuals with TBI (total = 13,165; control = 136,576; number of single nucleotide polymorphisms [SNPs] = 16,380,088). RESULTS: Seventy significant genome-wide SNPs from GWAS datasets with annotated years of schooling were selected as instrumental variables. The inverse variance weighted method results supported a causal relationship between years of schooling and TBI (odds ratio (OR), 0.78; 95 % confidence interval (CI), 0.62-0.98; P = 0.029). MR-Egger regression showed that polydirectionality was unlikely to bias the results (intercept = 0.007, SE = 0.01, P = 0.484) and demonstrated no causal relationship between years of schooling and TBI (OR, 0.52; 95%CI, 0.17-1.64; P = 0.270). The weighted median method revealed a causal relationship with TBI (OR, 0.73; 95%CI, 0.55-0.98; P = 0.047). A Cochran's Q test and funnel plot did not show heterogeneity nor asymmetry, indicating no directional pleiotropy. CONCLUSIONS: The current investigation yields substantiation of a causal association between years of schooling and TBI development. More years of schooling may be causally associated with a reduced risk of TBI, which has implications for clinical and public health practices and policies.


Genome-Wide Association Study , Mendelian Randomization Analysis , Humans , Prospective Studies , Causality , Educational Status
11.
J Med Chem ; 67(7): 5883-5901, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38509663

Cytochrome P450 1B1 (CYP1B1) contributes to the metabolic inactivation of chemotherapeutics when overexpressed in tumor cells. Selective inhibition of CYP1B1 holds promise for reversing drug resistance. In our pursuit of potent CYP1B1 inhibitors, we designed and synthesized a series of 2-phenylquinazolin-4-amines. A substantial proportion of these newly developed inhibitors demonstrated inhibitory activity against CYP1B1, accompanied by improved water solubility. Remarkably, compound 14b exhibited exceptional inhibitory efficacy and selectivity toward CYP1B1. Molecular docking studies suggested that the expansion of the π-system through aromatization, the introduction of an amine group, and iodine atom augmented the binding affinity. Furthermore, inhibitors 14a, 14b, and 14e demonstrated the ability to significantly reduce the resistance in A549 cells to paclitaxel, while also inhibiting the migration and invasion of these cells. Finally, radioiodine labeling experiments shed light on the metabolic pathway of compound 5l in mice, highlighting the potential of 125I-5l as a radioactive probe for future research endeavors.


Iodine Radioisotopes , Paclitaxel , Animals , Mice , Humans , Paclitaxel/pharmacology , A549 Cells , Molecular Docking Simulation , Amines , Cytochrome P-450 CYP1B1/chemistry
12.
Biomed Pharmacother ; 173: 116292, 2024 Apr.
Article En | MEDLINE | ID: mdl-38394848

Single-cell sequencing is a novel and rapidly advancing high-throughput technique that can be used to investigating genomics, transcriptomics, and epigenetics at a single-cell level. Currently, single-cell sequencing can not only be used to draw the pancreatic islet cells map and uncover the characteristics of cellular heterogeneity in type 2 diabetes, but can also be used to label and purify functional beta cells in pancreatic stem cells, improving stem cells and islet organoids therapies. In addition, this technology helps to analyze islet cell dedifferentiation and can be applied to the treatment of type 2 diabetes. In this review, we summarize the development and process of single-cell sequencing, describe the potential applications of single-cell sequencing in the field of type 2 diabetes, and discuss the prospects and limitations of single-cell sequencing to provide a new direction for exploring the pathogenesis of type 2 diabetes and finding therapeutic targets.


Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Islets of Langerhans , Humans , Diabetes Mellitus, Type 2/metabolism , Islets of Langerhans/metabolism , Pancreas/metabolism , Insulin-Secreting Cells/metabolism , Gene Expression Profiling
13.
Opt Express ; 32(1): 599-608, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-38175085

A temperature-insensitive high-sensitivity refractive index sensor is proposed and experimentally demonstrated, which is based on utilization of a thinned helical fiber grating but with an intermediate period (THFGIP). Attributed to the reduced diameter and an intermediate period of the grating, the proposed sensor has a high surrounding refractive-index (SRI) sensitivity and a low temperature sensitivity. The average SRI sensitivity of the proposed sensor is up to 829.9 nm/RIU in the range of 1.3410-1.4480 RIU. Moreover, unlike the traditional sensitivity-enhancement method by increasing the waveguide dispersion factor, here the waveguide dispersion factor at the resonant wavelength was decreased by reducing the diameter of the fiber grating and as a result, the crosstalk effect due to the temperature change can be further suppressed. The proposed temperature-insensitive SRI sensor has the superiorities of simple structure, ease fabrication, and low cost, which could be found more potential applications in the SRI sensing fields.

14.
Front Bioeng Biotechnol ; 12: 1354241, 2024.
Article En | MEDLINE | ID: mdl-38288261

Objective: The present study aimed to assess the bond strength and durability of six bonding agents concerning their application to metal or ceramic brackets and zirconia. Materials and Methods: Six resin cement bonding agents (XT, XTS, RSBU, RGBU, SBPM, and GMP) were chosen for this investigation. Specimens were either stored in distilled water at 37°C for 24 h or subjected to 5,000 thermocycles before conducting a Shear Bond Strength (SBS) test. Statistical analysis of the SBS data was performed using three-way ANOVA and Games-Howell tests (α = 0.05). The Adhesive Remnant Index was examined, and the debonding surface details on brackets and zirconia were observed. Results: For metal brackets, all groups demonstrated clinically acceptable bond strength, irrespective of storage conditions, except for the XT group. Regarding ceramic brackets, all groups displayed acceptable bond strength after 24 h of water storage. However, following thermocycling, a significant decrease in SBS was noted across all groups (p < 0.05), with SBPM exhibiting a higher bond strength. Three-way ANOVA analysis indicated that SBS values were notably influenced by each factor, and an interaction among the three independent variables was observed (p = 0.000). Conclusion: The reliable bond strength between ceramic brackets and zirconia was significantly lower after thermocycling compared to that of metal brackets and zirconia. SBPM exhibited consistent and robust bond strength between ceramic/metal brackets and zirconia across various storage conditions. Furthermore, the HEMA-free adhesive demonstrated a potentially more consistent bonding performance compared to the HEMA-containing adhesive employed in this study.

15.
Biol Psychiatry ; 95(9): 870-880, 2024 May 01.
Article En | MEDLINE | ID: mdl-37741308

BACKGROUND: Despite considerable effort toward understanding the neural basis of autism spectrum disorder (ASD) using case-control analyses of resting-state functional magnetic resonance imaging data, findings are often not reproducible, largely due to biological and clinical heterogeneity among individuals with ASD. Thus, exploring the individual-shared and individual-specific altered functional connectivity (AFC) in ASD is important to understand this complex, heterogeneous disorder. METHODS: We considered 254 individuals with ASD and 295 typically developing individuals from the Autism Brain Imaging Data Exchange to explore the individual-shared and individual-specific subspaces of AFC. First, we computed AFC matrices of individuals with ASD compared with typically developing individuals. Then, common orthogonal basis extraction was used to project AFC of ASD onto 2 subspaces: an individual-shared subspace, which represents altered connectivity patterns shared across ASD, and an individual-specific subspace, which represents the remaining individual characteristics after eliminating the individual-shared altered connectivity patterns. RESULTS: Analysis yielded 3 common components spanning the individual-shared subspace. Common components were associated with differences of functional connectivity at the group level. AFC in the individual-specific subspace improved the prediction of clinical symptoms. The default mode network-related and cingulo-opercular network-related magnitudes of AFC in the individual-specific subspace were significantly correlated with symptom severity in social communication deficits and restricted, repetitive behaviors in ASD. CONCLUSIONS: Our study decomposed AFC of ASD into individual-shared and individual-specific subspaces, highlighting the importance of capturing and capitalizing on individual-specific brain connectivity features for dissecting heterogeneity. Our analysis framework provides a blueprint for parsing heterogeneity in other prevalent neurodevelopmental conditions.


Autism Spectrum Disorder , Autistic Disorder , Humans , Brain Mapping/methods , Autism Spectrum Disorder/diagnostic imaging , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Neural Pathways/diagnostic imaging
16.
Front Genet ; 14: 1297271, 2023.
Article En | MEDLINE | ID: mdl-38075683

Introduction: Culex quinquefasciatus is a mosquito species of significant public health importance due to its ability to transmit multiple pathogens that can cause mosquito-borne diseases, such as West Nile fever and St. Louis encephalitis. In Harris County, Texas, Cx. quinquefasciatus is a common vector species and is subjected to insecticide-based management by the Harris County Public Health Department. However, insecticide resistance in mosquitoes has increased rapidly worldwide and raises concerns about maintaining the effectiveness of vector control approaches. This concern is highly relevant in Texas, with its humid subtropical climate along the Gulf Coast that provides suitable habitat for Cx. quinquefasciatus and other mosquito species that are known disease vectors. Therefore, there is an urgent and ongoing need to monitor the effectiveness of current vector control programs. Methods: In this study, we evaluated the impact of vector control approaches by estimating the effective population size of Cx. quinquefasciatus in Harris County. We applied Approximate Bayesian Computation to microsatellite data to estimate effective population size. We collected Cx. quinquefasciatus samples from two mosquito control operation areas; 415 and 802, during routine vector monitoring in 2016 and 2017. No county mosquito control operations were applied at area 415 in 2016 and 2017, whereas extensive adulticide spraying operations were in effect at area 802 during the summer of 2016. We collected data for eighteen microsatellite markers for 713 and 723 mosquitoes at eight timepoints from 2016 to 2017 in areas 415 and 802, respectively. We also investigated the impact of Hurricane Harvey's landfall in the Houston area in August of 2017 on Cx. quinquefasciatus population fluctuation. Results: We found that the bottleneck scenario was the most probable historical scenario describing the impact of the winter season at area 415 and area 802, with the highest posterior probability of 0.9167 and 0.4966, respectively. We also detected an expansion event following Hurricane Harvey at area 802, showing a 3.03-fold increase in 2017. Discussion: Although we did not detect significant effects of vector control interventions, we found considerable influences of the winter season and a major hurricane on the effective population size of Cx. quinquefasciatus. The fluctuations in effective population size in both areas showed a significant seasonal pattern. Additionally, the significant population expansion following Hurricane Harvey in 2017 supports the necessity for post-hurricane vector-control interventions.

17.
J Extracell Vesicles ; 12(12): e12395, 2023 12.
Article En | MEDLINE | ID: mdl-38050834

Bacterial extracellular vesicles (BEVs) are nano-size particles secreted by bacteria that carry various bioactive components. These vesicles are thought to provide a new window into the mechanisms by which bacteria affect their hosts, but their fundamental proprieties within human remain poorly understood. Here, we developed a single-vesicle analytical platform that enabled BEV detection in complex biological samples of host. Using this platform, we found the presence of BEVs in the host circulation and they were mainly derived from gut microbes. We showed that the levels of circulating BEVs in humans significantly increased with aging due to an age-related increase in intestinal permeability. Significantly different levels of BEVs in blood were also found in patients with colorectal cancer and colitis. Together, our study provides new insights into circulating BEV biology and reveals their potential as a new class of biomarkers.


Extracellular Vesicles , Humans , Bacteria
18.
Front Endocrinol (Lausanne) ; 14: 1287593, 2023.
Article En | MEDLINE | ID: mdl-38027220

Objective: We aimed to identify the clinical factors associated with lymph node metastasis (LNM) based on ultrasound characteristics and clinical data, and develop a nomogram for personalized clinical decision-making. Methods: A retrospective analysis was performed on 252 patients with papillary thyroid carcinoma (PTC). The patient's information was subjected to univariate and multivariate logistic regression analyses to identify risk factors. A nomogram to predict LNM was established combining the risk factors. The performance of the nomogram was evaluated using receiver operating characteristic (ROC) curve, calibration curve, cross-validation, decision curve analysis (DCA), and clinical impact curve. Results: There are significant differences between LNM and non-LNM groups in terms of age, sex, tumor size, hypoechoic halo around the nodule, thyroid capsule invasion, lymph node microcalcification, lymph node hyperechoic area, peak intensity of contrast (PI), and area under the curve (AUC) of the time intensity curve of contrast (P<0.05). Age, sex, thyroid capsule invasion, lymph node microcalcification were independent predictors of LNM and were used to establish the predictive nomogram. The ROC was 0.800, with excellent discrimination and calibration. The predictive accuracy of 0.757 and the Kappa value was 0.508. The calibration curve, DCA and calibration curve demonstrated that the prediction model had excellent net benefits and clinical practicability. Conclusion: Age, sex, thyroid capsule invasion, and lymph node microcalcification were identified as significant risk factors for predicting LNM in patients with PTC. The visualized nomogram model may assist clinicians in predicting the likelihood of LNM in patients with PTC prior to surgery.


Calcinosis , Thyroid Neoplasms , Humans , Thyroid Cancer, Papillary , Lymphatic Metastasis , Retrospective Studies , Risk Factors , Factor Analysis, Statistical , Thyroid Neoplasms/diagnostic imaging
19.
Front Neurol ; 14: 1249369, 2023.
Article En | MEDLINE | ID: mdl-38020616

Introduction: The use of magnesium sulfate for treating aneurysmal subarachnoid hemorrhage (aSAH) has shown inconsistent results across studies. To assess the impact of magnesium sulfate on outcomes after aSAH, we conducted a systematic review and meta-analysis of relevant randomized controlled trials. Methods: PubMed, Embase, and the Cochrane Library were searched for relevant literature on magnesium sulfate for aSAH from database inception to March 20, 2023. The primary outcome was cerebral vasospasm (CV), and secondary outcomes included delayed cerebral ischemia (DCI), secondary cerebral infarction, rebleeding, neurological dysfunction, and mortality. Results: Of the 558 identified studies, 16 comprising 3,503 patients were eligible and included in the analysis. Compared with control groups (saline or standard treatment), significant differences were reported in outcomes of CV [odds ratio (OR) = 0.61, p = 0.04, 95% confidence interval (CI) (0.37-0.99)], DCI [OR = 0.57, p = 0.01, 95% CI (0.37-0.88)], secondary cerebral infarction [OR = 0.49, p = 0.01, 95% CI (0.27-0.87)] and neurological dysfunction [OR = 0.55, p = 0.04, 95% CI (0.32-0.96)] after magnesium sulfate administration, with no significant differences detected in mortality [OR = 0.92, p = 0.47, 95% CI (0.73-1.15)] and rebleeding [OR = 0.68, p = 0.55, 95% CI (0.19-2.40)] between the two groups. Conclusion: The superiority of magnesium sulfate over standard treatments for CV, DCI, secondary cerebral infarction, and neurological dysfunction in patients with aSAH was demonstrated. Further randomized trials are warranted to validate these findings with increased sample sizes.

20.
Neoplasma ; 70(4): 534-544, 2023 Aug.
Article En | MEDLINE | ID: mdl-37789777

Glioma is a highly aggressive primary malignant tumor. Migration-inducing gene-7 (Mig-7) is closely related to tumor invasion and metastasis. However, the detailed molecular mechanism of Mig-7-mediated promotion of glioma cell invasion requires further investigation. Therefore, this study aimed to investigate the molecular mechanism by which Mig-7 promotes invasion and growth of glioma tumor cells. After collecting 65 glioma tissues and 16 non-tumor tissues, the expression difference of Mig-7 between tumor tissues and non-tumor tissues was analyzed. The molecular mechanism of Mig-7 in tumor cells was investigated by knockdown or overexpression of Mig-7 in U87MG cells. Specifically, the expression levels of mitogen-activated protein kinase (MAPK) signaling pathway-related molecules were detected in cells that knocked down Mig-7. MTT, Transwell, and three-dimensional cell culture assays were used to detect the survival, migration, invasion, and tube formation of U87MG cells that overexpressed Mig-7 were treated with the MAPK signaling pathway inhibitors (SP600125, SCH772984, and SB202190). The effect of Mig-7 on the tumorigenic ability of U87MG cells was investigated by subcutaneous tumorigenic experiment in nude mice. The corresponding results indicated that Mig-7 expression was significantly higher in glioma tissues and cell lines compared to that in non-neoplastic brain tissues and normal glial cell lines. In U87MG cells, downregulation or overexpression of Mig-7 inhibited or promoted the expression of MMP-2, MMP-9, LAMC2, EphA2, and VE-cadherin, and phosphorylation levels of ERK1/2, JNK, and p38. Mig-7 overexpression promoted migration, invasion, cell viability, and tube formation, which were reversed by the MAPK signaling pathway inhibitors. Mig-7 overexpression promoted subcutaneous tumor growth in mice and upregulated the phosphorylation levels of ERK1/2, JNK, and p38 and the expression of Ki-67. These effects of Mig-7 overexpression were reversed by MAPK pathway inhibitors. Overall, these results suggest that Mig-7 may be a novel biomarker and potential therapeutic target for glioma, with the MAPK pathway playing a key role in the corresponding Mig-7 mechanism of action.


Glioma , Mitogen-Activated Protein Kinases , Animals , Mice , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Glioma/pathology , MAP Kinase Signaling System , Mice, Nude , Mitogen-Activated Protein Kinases/metabolism , Neoplasm Invasiveness/genetics , Signal Transduction , Humans
...